Leveraging Crowdsourcing to Detect Improper Tasks in Crowdsourcing Marketplaces

Yukino Baba, Hisashi Kashima (Univ. Tokyo), Kei Kinoshita, Goushi Yamaguchi, Yosuke Akiyochi (Lancers Inc.)

IAAI 2013 (July 17, 2013).
Overview: Crowdsourced labels are useful for detecting improper tasks in crowdsourcing

TARGET
Improper task detection in crowdsourcing marketplaces

APPROACH Supervised learning

RESULTS

1. Operator (expert, expensive)
 - classifier
 - train
 - Classifier trained using expert labels achieved AUC 0.950

2. Operator (expert, expensive)
 - Aggregation strategy
 - train
 - Classifier trained using expert and non-expert labels achieved AUC 0.962

AUC: Area Under the receiver operator Curve
Background: Quality control of tasks posted to crowdsourcing has not received much attention.
Motivation: Improper tasks are observed in crowdsourcing marketplaces

Example of improper task

If you know anyone who might be involved in welfare fraud, please inform us about the person

Name
Address

Other examples are

- Collecting personal information
- Requiring workers to register for a particular service
- Asking workers to create fake SNS postings

Operators in crowdsourcing marketplaces have to monitor the tasks continuously to find improper tasks. However, manual investigation of tasks is very expensive.
Goal: Supporting the manual monitoring by automatic detection of improper tasks

OFFLINE
- Operator (expert, expensive)
- Crowdsourcing workers (non-expert, cheap)

TRAINING DATA
- Label (Proper/Improper)
 - ✔️
 - ❌
- Task Information
 - Task1
 - Task2

CLASSIFIER
- Train

ONLINE
- New task

The task is **IMPROPER**! The task is **PROPER**

Report to operator
Experiment 1: We trained a classifier using labels given by expert operators

Classifier trained using expert labels achieved AUC 0.950

Classifier trained using expert and non-expert labels achieved AUC 0.962

RESULTS

1. Classifier trained using expert labels achieved AUC 0.950

2. Classifier trained using expert and non-expert labels achieved AUC 0.962
Task dataset: Real operational data inside a commercial crowdsourcing marketplace

We used task data in [Lancers](https://www.lancers.jp) (MTurk-like crowdsourcing marketplace in Japan)

- ✔ 2,904 PROPER tasks
- ✗ 96 IMPROPER tasks

Features used for training

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples or description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task textual feature</td>
<td>Bag-of-words in task title and instruction</td>
</tr>
<tr>
<td>Task non-textual feature</td>
<td>Amount of reward and #assigned workers</td>
</tr>
<tr>
<td>Requester ID</td>
<td>“Who posted the task?”</td>
</tr>
<tr>
<td>Requester non-textual</td>
<td>Gender, age and reputation</td>
</tr>
</tbody>
</table>

This task is suspended due to violation of our Terms and Conditions

These labels are given by expert operators
Result 1: Classifier trained using expert labels achieved AUC 0.950

Classifier
Linear SVM, using 60% of tasks for training

Results
- Classifier using all features showed the best performance (0.950 for averaged AUC over 100 iterations)
- The task textual feature was the most effective
- Helpful features:
 - Red-flag keywords
 e.g., “account,” “password,” and “e-mail”
 - Amount of rewards
 - Requester reputation
 - Worker qualifications
Experiment 2: We trained a classifier using labels given by experts and non-experts

1. Quality control

2. Aggregation

RESULTS

1. Classifier trained using expert labels achieved AUC 0.950

2. Classifier trained using expert and non-expert labels achieved AUC 0.962
Non-expert label dataset: Multiple workers were assigned to label each task

We hired crowdsourcing workers on [Lancers] and asked them to label each task.
Quality control of worker labels: We applied existing method considering worker ability

Reliability of labels given by non-expert workers depends on individual workers
→ We merged the labels by applying a statistical method considering worker ability [Dawid&Skene ‘79]

Assuming that “High-ability workers are prone to give correct labels” and “Workers giving correct labels have a high ability”: the method predicts both true labels and worker abilities

Aggregation of expert and non-expert labels: Rule-based strategies

(1) If both labels are the same: just use the label

(2) If both labels are different: We have three strategies

1. Select ✔ PROPER as agreed label
2. Select ✗ IMPROPER as agreed label
3. Ignore the sample (labeled task) and do not include it in training dataset

We have 3×3 strategies for both cases in ✔ ✗ and ✗ ✔.

Crowdsourcing workers (non-expert)
Operator (expert)

How can we aggregate labels given by experts and non-experts?
Result 2: Classifier trained using expert and non-expert labels achieved AUC 0.962

Best strategy achieved averaged AUC 0.962

BEST STRATEGY

- If the experts judge a task as **IMPROPER**, the strategy always sides with the experts.
- If the experts judge a task as **PROPER** but the non-experts disagree, the strategy ignores the sample.

Why did the best strategy perform well?

- The expert operators seem to judge a task as **IMPROPER** strictly, so we should sides with them if they judge a task as **IMPROPER**.
- The non-expert crowdsourcing workers are not very serious to judge a task as **IMPROPER** so we should ignore the task if the experts disagree the judgments by the non-experts.
Result 3: Crowd labels can reduce the number of expert labels by 25% while maintaining accuracy.

Crowdsourced labels are useful in reducing the number of expert labels while maintaining the same level of classification performance.
Summary: Crowdsourced labels are useful for detecting improper tasks in crowdsourcing

To support manual monitoring, we used machine learning techniques and built classifiers to detect improper tasks in crowdsourcing.

1. ML approach is effective in improper task detection (Result 1)

2. By addressing a range of reliability and choosing a good aggregation strategy, crowdsourced labels improved the performance of improper task detection (Result 2)

3. Crowdsourced labels are useful in reducing the labeling cost of expert operators (Result 3)